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It is well established that neural imaging technology can predict
preferences for consumer products. However, the applicability of this
method to consumer marketing research remains uncertain, partly
because of the expense required. In this article, the authors
demonstrate that neural measurements made with a relatively low-cost
and widely available measurement method—electroencephalography
(EEG)—can predict future choices of consumer products. In the
experiment, participants viewed individual consumer products in
isolation, without making any actual choices, while their neural activity
was measured with EEG. At the end of the experiment, participants
were offered choices between pairs of the same products. The authors
find that neural activity measured from a midfrontal electrode displays
an increase in the N200 component and a weaker theta band power that
correlates with a more preferred product. Using recent techniques for
relating neural measurements to choice prediction, they demonstrate
that these measures predict subsequent choices. Moreover, the accuracy
of prediction depends on both the ordinal and cardinal distance of the
EEG data; the larger the difference in EEG activity between two products,
the better the predictive accuracy.
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Using EEG to Predict Consumers’ Future
Choices

In the past 15 years, understanding of the neuroscience
underlying decision making has rapidly advanced (for
reviews, see Glimcher 2011; Glimcher and Fehr 2013), raising
hopes that measurements of neural activity—and a deeper
understanding of neural mechanisms—can be applied to mar-
keting research. Two promising avenues for such a contribu-
tion have been previously identified (Ariely and Berns 2010).
First, insights from neuroscience might improve the marketing
message for existing products. Second, neuroscience might
provide insights into how products are valued before they
even exist in the marketplace, improving product design.

Both these avenues rely on the proposal that neuroscience
can reveal information about consumer preferences that is
unobtainable through conventional methods. There is cer-
tainly room for improvement. Previous studies have demon-
strated that different preference elicitation methods can
result in different subject responses (Buchanan and Hender-
son 1992; Day 1975; Griffin and Hauser 1993; McDaniel,
Verille, and Madden 1985). The use of questionnaires for
evaluating consumers’ preferences, attitudes, and purchase
intent can result in a biased or inaccurate result (Fisher 1993;
Neeley and Cronley 2004), and even a verbal statement of
preferences can also generate conscious or unconscious
biases. In some cases, consumers decline to state their actual
preferences (for reasons such as discretion or shame), and in
other cases, they cannot verbalize a justification for their
preferences (Johansson et al. 2006; Nisbett and Wilson 1977).
It can also be difficult (and sometimes impossible) to

directly elicit consumers’ preferences through choices due
to high product cost, ethical considerations, or the hypo-



thetical nature of a new product under development. This
forces the marketer to examine hypothetical choices with
hypothetical rewards, resulting in a potential bias in
which responses are overstated compared with incentive-
compatible choices (Blumenschein et al. 2008; Cummings,
Harrison, and Rutstrom 1995; Johannesson, Liljas, and
Johansson 1998; List and Gallet 2001; Murphy et al. 2005)
or plans (Ariely and Wertenbroch 2002; O’Donoghue and
Rabin 2008; Tanner and Carlson 2009). These results are
bolstered by neuroscientific evidence that suggests varia-
tions in value computations between real and hypothetical
choice situations (Kang and Camerer 2013; Kang et al.
2011).
Because marketing messages in many campaigns are

intended to influence consumers’ preferences, attitudes,
and/or actual purchases sometime in the future, all the
aforementioned factors confound the task of evaluating con-
sumer preferences and limit the ability to predict choice at
the time of the purchase decision. Therefore, finding a cost-
effective tool that can predict consumers’ future behavior in
response to marketing messages, and forecast future prefer-
ences for novel products, would be beneficial in consumer
marketing applications.
Recent studies have directly addressed the two avenues

for incorporating neuroscientific methods into marketing
research. Evidence from functional magnetic resonance
imaging (fMRI) indicates that the same brain areas that rep-
resent values in a choice situation—primarily the medial
prefrontal cortex (mPFC) and striatum (for recent meta-
studies, see Bartra, McGuire, and Kable 2013; Clithero,
Carter, and Huettel 2009; Levy and Glimcher 2012)—also
represent values when participants are evaluating individual
products in the absence of choice behavior (Falk, Berkman,
and Lieberman 2012; Lebreton et al. 2009; Levy et al. 2011;
Smith et al. 2014; Tusche, Bode, and Haynes 2010).1 The
magnitude of these signals correlates with the trial-by-trial
likelihood that a consumer will choose a particular product,
and it can be used to predict subsequent choices with a fully
cardinal neural random utility model (NRUM; Webb et al.
2013). The NRUM extends the choice prediction results of
the familiar random utility framework (Becker, DeGroot,
and Marschak 1964; McFadden 1973) to neural measure-
ments, with the important distinction that there are no unob-
servable latent variables. In doing so, the model character-
izes neural sources of the stochasticity observed in choice
behavior (Huettel and Payne 2009; Yoon, Gonzlez, and
Bettman 2009), controls for measurement error, and improves
choice prediction results.
These results are in line with many studies demonstrating

that activity in the mPFC and striatum correlates with vari-
ous value-related attributes and with known methods for
estimating the values participants put on choice objects—
ranging from consumable products, to money lotteries, to
charitable donations, to durable products, to social prefer-

ences, to political preferences (for reviews, see Bartra,
McGuire, and Kable 2013; Grabenhorst and Rolls 2011;
Kable and Glimcher 2009; Levy and Glimcher 2012;
Padoa-Schioppa 2011; Platt and Huettel 2008; Rushworth
2008). Importantly, these same areas are also active for the
valuation of novel products that consumers have never
before experienced (Barron, Dolan, and Behrens 2013).
However, the applicability of these findings to consumer

marketing research remains uncertain, with the current cost
of obtaining and operating an fMRI scanner preventing
their broad application. Most prominently, an fMRI scan-
ner has a large fixed-cost component; it is expensive to pur-
chase (~$1 million–$2 million), expensive to keep opera-
tional ($100,000–$150,000 for insurance, maintenance,
and support staff), expensive to locate (requiring a cus-
tomized room/building), and immobile. Compared with the
fixed-cost component, the marginal cost of running an
fMRI experiment is relatively low but still on the order of
$500 per experiment. These relatively high costs severely
limit the use of fMRI in both academic and commercial
applications.
There are also technical limitations to fMRI, primarily a

relatively low temporal resolution on the order of two sec-
onds (Huettel, Song, and McCarthy 2004). This resolution
makes it difficult to examine the rapid dynamics of neural
signals that are relevant for the neural mechanisms under-
lying value representation. A faster sampling rate might
convey predictive information for consumers’ valuation and
choice, information that is blurred by fMRI. For example,
consumers can make decisions about consumable products
in as little as a third of a second (Milosavljevic, Koch, and
Rangel 2011). It may well be the case that a particular, rapid
component of the neural signal has more indicative and pre-
dictive power for consumers’ preferences than the more
global signal of fMRI.
To address these concerns, in our study we use an alterna-

tive neuroscientific tool called electroencephalography
(EEG). From a fixed-cost standpoint, EEG is an order of
magnitude cheaper than fMRI (approximately $50,000),
requires little support and maintenance, and is widely avail-
able in neuroscience laboratories. The marginal cost of run-
ning an EEG experiment is only a few dollars, again more
than an order of magnitude cheaper than an fMRI experi-
ment. From a technical standpoint, EEG also has a high
sampling rate (approximately 1–2 ms; Luck 2005), which
enables identification of very fast changes in the neural sig-
nal over short time scales (approximately 50 ms; Luck
2005) that may carry strong predictive information about
consumer preferences and choice behavior.
In this article, we rigorously examine whether EEG

measurements of neural activity—recorded while partici-
pants view individual consumer products on a computer
screen without making any choices—can be used to predict
both rank-ordered preference ratings and actual choices in a
subsequent behavioral choice task. We demonstrate that this
is indeed the case. We show that specific spatial and tempo-
ral components of the EEG signal correlate with partici-
pants’ future rank-ordered preferences and can be used to
predict subsequent choices. To our knowledge, this is the
first EEG study to demonstrate a basic principle: we can use
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1Each of these “nonchoice” studies also find activity in other areas, vary-
ing from the dorsomedial prefrontal cortex, the insula, the anterior and pos-
terior cingulate cortex, hippocampus, and parietal cortex. However, the
mPFC and striatum are the only regions common across these studies and
the only regions identified in the meta-studies referenced previously
(which include the nonchoice studies).
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measured neural activations to predict choices without the
need to ask consumers anything.

LITERATURE REVIEW
Link Between EEG Recordings, Valuation, and Choice
Several studies have linked EEG activity with some

aspect of consumer preferences. One of the first, conducted
by Ambler et al. (2004), demonstrated a correlation between
EEG activity in the parietal cortex and the familiarity rating
of a product. Evidence of hemispheric asymmetry in the
EEG signal correlating with preference has been demon-
strated by Sutton and Davidson (2000). Participants in this
study with greater resting activity in the left-frontal elec-
trodes (as reflected by a lower power in the alpha EEG
band, 8–13 Hz) selected more pleasant stimuli in a subse-
quent behavioral task than participants with greater resting
activity in the right-frontal electrodes. 
A related study also examined the relationship between

hemispheric asymmetry in the EEG signal and an aspect of
preferences (i.e., risk aversion), but in the absence of choice
(Gianotti et al. 2009). In the initial phase of this experiment,
participants sat quietly in a room while their baseline or
“tonic” neural activity was measured. After the measure-
ments, they engaged in a behavioral task to elicit their pref-
erences for risk. Higher tonic activity in the right prefrontal
cortex, measured before the behavioral task, correlated with
a higher level of risk aversion (an avoidance-related behav-
ior) as measured in the behavioral task. Importantly, this
study demonstrated that EEG activity, measured in the
absence of choice behavior, can be used to predict a prefer-
ence trait.
Several studies have also demonstrated that EEG activity,

measured concurrently with choice, is related to choice
behavior. For example, in Braeutigam et al.’s (2004) study,
both gamma (20–45 Hz) and alpha (8–13 Hz) band oscilla-
tions were correlated with participants’ choices of consumer
products in specific time epochs and brain locations. In a
more recent study, Ravaja, Somervuori, and Salminen
(2013) demonstrate that relatively greater left-frontal acti-
vation (in the alpha band), measured just a few seconds
before choice, predicted the affirmative decision to pur-
chase a given consumer product. Greater perceived need for
a product and higher perceived product quality (as mea-
sured by a questionnaire answered at the end of the decision
phase) were also associated with greater relative left-frontal
activation (also in the alpha band). However, in both these
studies, participants made actual choices during the EEG
recording. Therefore, it is still an open question whether
EEG data can be used during passive viewing of products to
predict choices over some substantial time horizon.
Vecchiato et al. (2011) provide an important step forward

on this question. The authors recorded EEG activity while
participants viewed video commercials and then related
these measurements to the responses from a questionnaire
about the pleasantness of the same commercials (conducted
two hours after the EEG session). The theta and alpha band
activities were related to the subsequent pleasantness rat-
ings, with activity in the left-frontal cortex related to “pleas-
ant” commercials and activity in the right-frontal cortex
associated with “unpleasant” commercials. Although the

study demonstrated a link between EEG recordings and a
subsequent behavioral response, the use of pleasantness rat-
ings might not be correlated with the actual valuation and
subsequent choice of a product, as noted previously. In
addition, the authors did not assess predictive power or the
precision of predictions. Therefore, in the current study, we
aim to overcome these limitations and demonstrate the
applicability of using EEG for predicting consumer choices.
Technical Aspects of EEG Measurement
Neurons in the brain communicate through electrical

impulses; EEG measures the oscillations of the resulting
electrical potentials (voltages) with electrodes located on
the human scalp. Each electrode reflects the summation of
the synchronous activity of thousands or millions of neu-
rons that have similar spatial orientation. Because voltage
fields fall off with the square of distance, activity from deep
brain areas is more difficult to detect than activity near the
skull. Therefore, most of the measured EEG signals origi-
nate from cortical rather than subcortical areas. It is well
established that behaviors and mental processes are due to
complex interactions among multiple brain areas in various
spatial and temporal scales. Only part of this dynamic activ-
ity can be measured at the macroscopic level by scalp EEG
(Luck 2005; Nunez and Srinivasan 2006).
In this study, we examine the EEG response to consumer

products using two common methods, both of which have
been shown to represent mental processes that emerge in
reaction to various stimuli. The first method is the event-
related potential (ERP), which measures the changes in the
voltage level in response to a stimulus presented as a func-
tion of time. Because the temporal resolution of these mea -
surements is on the order of tens of milliseconds, ERPs can
accurately measure when rapid processing activities take
place in the human brain and can provide information about
a broad range of cognitive and affective processes (Luck
2005; Nunez and Srinivasan 2006). With regard to decision
processes, such as categorizing and evaluating a stimulus,
two well-known ERP components have been identified: the
P300 wave component (i.e., a positive deflection in the
scalp potential starting 300 ms after the stimulus presenta-
tion; see Polich 2007; Soltani and Knight 2000) and the
N200 wave component (i.e., a negative deflection in the
scalp potential starting 200 ms after the stimulus presenta-
tion; see Folstein and Van Petten 2008).
The second method we employ is event-related spectral

perturbations (ERSP). Similar to the ERP technique, ERSP
measures the response to a stimulus over time, but it divides
the EEG signal into different frequency bands. The ERSP
method then examines whether and to what extent there is a
change in the power of a given frequency band across time.
Importantly, the measured change in power provides both a
temporal and a spatial code, which adds valuable informa-
tion to the ERP data. The frequency spectrum is usually sub-
divided into frequency bands: delta (1–4 Hz), theta (5–8
Hz), alpha (8–12 Hz), beta (14–30 Hz), and gamma (40 Hz).
Ample data have linked changes in these frequency bands

to various cognitive processes, including changes in mental
state (Moretti et al. 2004), changes in attention allocated to
a task (Klimesch 1999), memory processes (Klimesch
1996), motivation and emotional processes (Knyazev



2007), different sleep stages (Keenan 1999), and conscious-
ness levels (John 2002). For example, the alpha band has
been associated with attention focusing (Prime, Tata, and
Ward 2003), the theta band with inhibition of elicited
responses (Kirmizi-Alsan et al. 2006; Yamanaka and
Yamamoto 2010), and the beta band with alertness
(Pfurtscheller and Lopes da Silva 1999). However, it is
important to emphasize that each frequency band can be
associated with many cognitive processes, so whether a par-
ticular mental process is active cannot be concluded from
simply examining changes in a specific frequency band
(Poldrack 2006). It is also important to note that because the
spatial resolution of the EEG signal is quite poor, any con-
clusions about the exact localization of the signal should be
taken cautiously and should not be used as evidence that an
identified brain area is related to a measured behavior.

METHOD
This study follows the same three-stage experimental

procedure used by Levy et al. (2011). In Stage 1, partici-
pants received a general description of the study procedure
and familiarized themselves with ten consumer products. In
Stage 2, neural activity was measured with EEG while par-
ticipants viewed pictures of the products they encountered
in Stage 1. The aim of this stage was to acquire independent
measurements of neural activity for each product in isola-
tion. In Stage 3, participants were presented with pairs of
the consumer products, made binary choices between all the
products they saw during the EEG stage, and then rank-
ordered the products according to their preferences. Next,
we describe these stages in detail.
Stage 1: Familiarization with the Products
The experimenter briefly described each product and

invited the participants to examine them (the products were
in their original packages). Participants were not informed
of the actual prices of the products. After presenting all the
products, we informed participants that at the end of the
experiment, they would receive the product they wanted
most. We randomly chose the consumer products used in
the study from the online website of one of Israel’s largest
retail stores (Home Center). The products were (1) white
digital stereo headphones, (2) a white plastic kettle, (3) a
pink bulb desk lamp, (4) a red optical wireless mouse, (5) a
red and black 16 GB USB flash drive, (6) a magnetic mes-
sage board, (7) a rainbow-colored hammock, (8) a white
and blue steam iron, (9) a pink yoga mat, and (10) a yellow
fry pan. The average price of the products was 80 NIS
(Israeli new shekel), ranging from 70 to 90 NIS. This limits
the possibility that the value differences we observe are due
to differences in purchasing price. Full descriptions of the
products, including images, appear in the Web Appendix.
Stage 2: EEG Measurement
After participants examined all the products, Stage 2 of

the experiment began. Each participant was seated in a com-
fortable chair in a dimly lit soundproof room, and an EEG
electrode cap was placed on his or her head. Participants
were asked to minimize head and body movements as much
as possible at the time of the recording. On a standard com-
puter screen, images of all ten products encountered in

Stage 1 were sequentially presented. Only one product was
presented in each trial, and participants were simply
instructed to “think about how much the product was worth
to them.” Note that during the EEG recordings, participants
did not make any actual choices or execute any other motor
response.
Figure 1, Panel A, depicts the visual presentation of a

consumer product. During each trial, a fixation cross was
presented at the center of the screen for a randomly varied
interval of 800–1200 ms, followed by the presentation of a
product for two seconds. The fixation period of the next trial
started immediately after the previous trial. To improve the
signal-to-noise ratio of our measurement, each product was
presented 50 times, in a random order, resulting in 500 total
trials. We divided these 500 trials into ten blocks, consisting
of 50 trials in each block. Participants were allowed to take
short breaks between the blocks. At the end of each block, a
message appeared on the screen stating that the participant
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Figure 1
EXPERIMENTAL DESIGN

A: Stimuli Design and Timing of Products’ Presentation During the EEG
Recording Phase

!

B: Example Trials of the Behavioral Choice Task

!
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could continue the task whenever he or she was ready by
pressing the mouse button. The total time of the EEG
recording stage was 25 minutes. The Web Appendix pro-
vides a full description of the technical details regarding the
EEG recording and preprocessing of the signal.
Stage 3: Choice Stage
After completion of the EEG recording, the EEG elec-

trode cap was removed, and participants waited ten minutes
before starting the behavioral choice task. Figure 1, Panel B,
depicts the visual presentation for this task. On each trial,
two products appeared simultaneously on the computer
screen, and participants stated which product they preferred
(under no time limit). All possible pairwise comparisons of
the ten products were presented, totaling 45 pairs, and each
pairwise choice was repeated six times, totaling 270 ran-
domly ordered choice trials. The repetition of six choices is
important for the measurement error correction we employ
in our choice prediction analysis. The location of each prod-
uct on the screen (left or right) was also randomly altered.
To further validate the results of the behavioral choice

task, we conducted two additional measures. First, partici-
pants were asked to answer a brief computerized question-
naire, in which they rated how much they liked each product
on a seven-point scale, ranging from “dislike a lot” (1) to
“like a lot” (7), and also rated how much they wanted each
product on a seven-point scale, ranging from “don’t want at
all” (1) to “want very much” (7). Second, participants rank-
ordered the products from 1 (“most preferred”) to 10 (“least
preferred”). Finally, to control for any possible ownership
effects, we asked participants to state, for each product,
whether they owned a similar product. The products on all
questionnaires were randomly ordered. At the end of the
experiment, the participants selected one product.
To ensure that the possession of similar products would

not affect the correlation between each of the question-
naires and the scores of the behavioral choice task, we
conducted a Pearson partial correlation between the ques-
tionnaires and the choice preferences, using the possession
of the products as a binary control variable. The analysis
revealed that possession of similar products did not have
any significant effect on the magnitude or significance of
the correlations.
EEG Measurements
To analyze the EEG data, we used two distinct, well-

established methods (Nunez and Srinivasan 2006). In the
first approach, termed ERP, the general waveform for each
electrode (of the 19 electrodes in our setup) is averaged
across all repeated presentations of the same product, time-
locked to the stimulus presentation. Therefore, we averaged
the waveforms of all 50 presentations for each product and
for each participant. This enabled us to observe the aver-
aged waveforms across the different products for each par-
ticipant and to examine whether any systematic differences
predicted future choices. The second approach, termed
ERSP, evaluates specific frequencies embedded within the
general EEG signal. The ERSP analysis reflects changes
across time in the power of specific frequency domains as a
response to the stimulus presentation. Therefore, for each
frequency, average event-locked deviations from the base-

line activity (mean power) can be tracked (Makeig et al.
2004). We then examined whether specific frequencies
could be used to predict participants’ future choices.
To avoid the issue of multiple comparisons and post hoc

hypotheses, we used both previous literature and a basic
visual and statistical analysis conducted on the data from
our first five participants to determine which electrode to
focus on, which ERP and ERSP components to analyze, and
the duration of the time window. We continued with our
remaining participants—and with the choice prediction
exercises that constitute the main hypothesis of the study—
only after we decided on these basic aspects of the EEG
analysis.
For our first five participants, we compared the average

ERP signal in response to a median split of the top five
most-preferred products in the sample (across all partici-
pants) and the bottom five least-preferred products (for a
full report of this analysis, see the “Results” section and
Table WA1 in the Web Appendix). We found that the mean
amplitude of the N200 component could differentiate
between the most- and least-preferred products; however,
the P300 component of the ERP signal was not significant.
In line with previous studies (Folstein and Van Petten 2008)
and the known dynamics of the N200 component (Folstein
and Van Petten 2008; Naatanen and Picton 1986; Sutton et
al. 1965), we thus focused the remainder of our analysis on
a 100 ms time window (200–300 ms after stimulus presen-
tation) that was centered on the N200 peak amplitude (typi-
cally observed near 250 ms).
With regard to electrode choice, ample data from EEG

studies (Holroyd and Coles 2002; Nieuwenhuis et al. 2004;
San Martin et al. 2010; Yeung and Sanfey 2004) and fMRI
studies (Bartra, McGuire, and Kable 2013; Grabenhorst and
Rolls 2011; Kable and Glimcher 2009; Levy and Glimcher
2012; Padoa-Schioppa 2011; Platt and Huettel 2008; Rush-
worth 2008) suggest that value representation is located in
frontal areas. In accordance with this preliminary hypothe-
sis, we identified that the strongest difference in N200
amplitude (between the top five most-preferred and the bot-
tom five least-preferred products) was in the front of the
scalp map, with the strongest effect in electrode Fz—a cen-
tral electrode located near the front of the brain. Because we
focused our analysis on the N200 component and because
this component is mainly evident in frontal central elec-
trodes (Folstein and Van Petten 2008; Luck 2005; Nunez
and Srinivasan 2006), we centered the rest of our analysis
on electrode Fz.
We repeated this strategy for the ERSP analysis. The

average ERSP signal in the frequency range 0–40 Hz could
differentiate between a median split of the top five most-
preferred products and the bottom five least-preferred prod-
ucts (again, see the “Results” section and Table WA1 in the
Web Appendix). This guided us to focus on the theta band
activity (5–8 Hz) within a time window of 100–400 ms after
the stimulus presentation. This observation is in line with
previous studies showing a link between theta band activity
and valuation (Cohen, Elger, and Ranganath 2007; Gehring
et al. 2012). We also hypothesized that alpha waves might
be related to participants’ subsequent choices; however, we
found no evidence to support this hypothesis (see Table
WA1 in the Web Appendix).



The accumulation of these results led us to focus our sub-
sequent analyses of the entire sample on the N200 and
ERSP theta component in electrode Fz (in the same time
windows as previously noted). Importantly, in our subse-
quent analysis and choice prediction exercise, we did not
run any statistical analysis on any other time windows or
any other electrodes. To examine the robustness of our find-
ings, at the end of the study we repeated the initial median-
split analysis on the remaining ten participants initially held
out and repeated our entire analysis on a control electrode,
which we describe subsequently. These results matched our
initial findings (see Table WA1 in the Web Appendix).
Control Electrode
After conducting all our correlation and choice prediction

exercises on the frontal electrode Fz, we examined whether
the predictive information of the EEG signal originates in
more frontal areas (as would be expected from previous
findings) or whether the predictive signal could be detected
in other electrodes. Therefore, we engaged in a control exer-
cise by repeating all the analyses in a more posterior but still
centrally located electrode—Pz.

RESULTS
Establishing Consistency in Choices and Liking Ratings
The first step in relating neural measurements to choice

data is determining the consistency of choices over the six
repetitions of each choice pair and gauging the degree of
stochasticity in choice behavior. The existence of consistent
preferences and/or a clear rank ordering of the consumer
products should presumably ensure a suitable range of valu-
ations that can be measured with EEG.
The proportion of choice pairs resulting in an even split

between the two products (each product was preferred in
half a participant’s choices) was markedly low (.02, SE =
.01). Furthermore, the proportion of the six repeated pairs in
which the participants switched their preference at least
once was .25 (SE = .02) (over all participants). This propor-
tion is relatively low considering that this is the probability
of observing at least one switch out of six trials from the
binomial distribution, with a success probability of .795 on
each trial.
To gauge how much of the switching was due to possibly

inconsistent preferences, we also examined the proportion
of stochastic transitivity violations (Tversky 1969). For
each triplet of products {A,B,C}, such violations occur
when P(A|{A,B}) ≥ .5, P(B|{B,C}) ≥ .5, and P(A|{A,C}) <
.5. Across all participants, the proportion of violations (of
all possible violations) was extremely low (.02, SE = .003),
with seven participants exhibiting no violations. Together,
these results suggest that participants had relatively clear
rank-ordered and consistent preferences for the products,
but with an element of stochasticity in choice behavior that
is commonly observed.
Behavioral Choice Task Scoring
Following Levy et al. (2011), we assigned a preference

score for each product (and each participant) according to
the total number of times each participant chose it across all
trials (for detailed description of the preference scores, see
Table WA2 in the Web Appendix). To assess the validity of

these preference scores, we compared them with question-
naire responses and the results of the rank-ordering task.
The correlation (across participants) between the average
preference score for each product and the average ranking
given to each product in the rank-order questionnaire was
large and significant (r = .97, p < .001). There was also a
large and significant correlation between the behavioral task
preference scores and both the liking of the product (r = .82,
p < .001) and the wanting of the product (r = .96, p < .001)
as measured in the self-report questionnaire.2 These high
correlations corroborate the validity of the behavioral
choice task preference scores as measuring participants’
rank-ordered preferences.
Finally, because the ability to predict participants’ pref-

erences partly depends on the “strength” of their prefer-
ences, we computed a min/max range by subtracting the
preference score of the lowest product from the score of the
highest product (for a full description of these dispersion
rates, see Table WA2 in the Web Appendix). Importantly,
the average range across participants was large (M = 52,
SD = 2) and close to the maximal possible range of 54.
Therefore, participants had relatively strong preferences
across products, which increases our chances for success-
fully predicting their future choices from the neural data.
Notably, a degree of homogeneity was also present in par-
ticipants’ preferences (i.e., they tended to choose the same
products; see Table WA2 in the Web Appendix). This
homogeneity will allow for a population-level analysis of
the EEG signal, which we explain next. The subject-level
analysis follows.
EEG Differentiates Between Most- and Least-Preferred
Products Across Population
We begin with a simple population-level analysis

designed to identify a difference in the EEG signal in
response to a median split of the number of times a product
was chosen in the binary choice task (a breakdown of this
analysis for the first five participants appears in Table WA2
in the Web Appendix).
Figure 2 reports the average mean amplitude of the

N200 component across participants (in electrodes Fz and
Pz) for the five most-preferred products and the five least-
preferred products. We find evidence of an association
between neural activity and behavior in the downward
(negative) deflection of the N200 signal starting 200 ms
after the stimulus presentation. The average deflection of
the N200 is larger in magnitude for the five least-preferred
products than the five most-preferred products, and this
difference was significant in both Fz (paired t-test; t(14) =
–2.72, p < .05) and Pz (t(14) = –3.18, p < .01) electrodes.
However, note that the overall deflection of the N200
component across all products is much larger in electrode
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2We computed for each questionnaire how well it was able to predict the
choices participants made in the behavioral task. For the ranking question-
naire, the proportion of correct predictions of actual choices using the rank-
ing given to each product was .88 (SD = .07) and significantly different
from chance level (t(14) = 22, p < .001). Liking the product was also a sig-
nificant predictor (M = .67, SD = .11; t(14) = 5.98, p < .001). The same was
evident for wanting the product in question (M = .69, SD = .09; t(14) =
8.17, p < .001).
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Fz (M = –4.925 mV, SD = 5.55) than in electrode Pz (M =
–1.09 mV, SD = 3.96), suggesting that the origin of the sig-
nal is more frontal. As the scalp map in Figure 2 illus-
trates, the largest difference in the average voltage distri-
bution for the least-preferred minus the most-preferred
products (within the N200 time frame) is evident in the
frontal parts of the scalp.
In addition to the population-level correlation found in

the N200 component, we conducted an ERSP analysis to
examine whether a specific frequency domain within the
EEG signal carries predictive power. Figure 3 compares
the mean theta band activity in response to the five most-
preferred products with that of the five least-preferred
products. The average theta power following the presenta-

tion of the least-preferred products (M = 1.72 dB, SD =
1.36) was significantly stronger than that following pres-
entation of the most-preferred products (M = 1.28 dB, 
SD = 1.07) in electrode Fz (t(14) = –3.75, p < .01). How-
ever, this difference was not apparent in electrode Pz
(t(14) = –.58, p < .57).
Because previous studies have demonstrated a correlation

between the slow alpha waves (8–10 Hz) and valuation
(albeit using a hemispheric asymmetry analysis; Vecchiato
et al. 2011), we also computed the difference between the
most-preferred and least-preferred products in terms of slow
alpha waves activity. We identified slow alpha waves from
the same ERSP analysis, but now focused on the 8–10 Hz
frequency band. There was no significant difference

Figure 2
GRAND-AVERAGE ERP WAVEFORMS RECORDED AT ELECTRODE SITE Fz (TOP LEFT) AND AT Pz (TOP RIGHT) DURING THE EEG

RECORDING PHASE

A:

Notes: The red line shows the average ERP response to the five least-preferred products, and the green dashed line corresponds to the five most-preferred
products. There is a significant N200 effect (p < .05) with larger (negative) deflection to least-preferred products in both electrodes. The scalp maps show the
distribution of voltage from 0–500 ms after the products presentation divided into time intervals of 100 ms for least-preferred minus most-preferred products.
According to the map, the effect is prominent during the 200–300 ms time window and focused on the frontal parts of the scalp.

300–400 ms200–300 ms100–200 ms0–100 ms



between the groups (Mmost-preferred = .86, SD = 1.22 vs.
Mleast-preferred = 1.05, SD = 1.5; t(14) = –1.18, p = .25), sug-
gesting that, at least in our experiment, the predictive infor-
mation of the frequency domain is relatively narrow; pre-
dictive information is not a general trait of many
frequencies, but it is rather focused on the theta frequency
band.

Correlation of EEG Activity and Preference for Products
Across Population
Having established an average, population-level differ-

ence in the N200 component for most- and least-preferred
products, we now examine whether the EEG activity mea-
sured for a particular product is correlated with the ranking
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Figure 3
ERSP FOR MOST-PREFERRED (LEFT) AND LEAST-PREFERRED PRODUCTS (RIGHT)

A: Electrode Fz

B: Electrode Pz

Notes: Logarithmic scale of EEG frequency (3–40 Hz) is indicated on the y-axis. Hot colors indicate higher power, as shown on the scale on the right. The
power in the theta frequency band (5–8 Hz) for least-preferred products was stronger than that for most-preferred products (p < .01) only at electrode Fz. The
scalp map shows the distribution of theta power from 100–400 ms after the products presentation for least-preferred minus most-preferred products. Accord-
ing to the map, the effect is primarily located at the frontal parts of the scalp.
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of that product, across all participants. For each product, we
observed the magnitude of the N200 amplitude (averaged
over 50 repetitions and over all participants) and the prefer-
ence scores for each product (the number of times all par-
ticipants chose each product).
As Figure 4, Panel A, illustrates, the correlation between

the average N200 amplitude for a product and the prefer-

ence score for each product across all participants was high,
positive, and significant (Fz: r = .76, p < .01; Pz: r = .75, p <
.05). That is, the lower the measurement of (negative) N200
amplitude, the higher the preference ranking of that product
in the subsequent behavioral choice task across the popula-
tion of participants. Note that the correlation remained sig-
nificant even when we analyzed the data using Spearman

Figure 4
POPULATION-LEVEL ANALYSIS

A: N200 ERP Component

B: Theta Band (5–8 Hz) Power

!

!
Notes: The graph shows a scatterplot of the correlation across products between the average EEG activity in response to viewing the products and the pref-

erence scores of the products as measured by the total number of times all participants chose each product during the subsequent behavioral task for electrodes
Fz (left) and Pz (right). The horizontal error bars denote the standard error of the EEG activity for each product across participants. The vertical error bars rep-
resent the standard error of the means of the preference ratings for each product across participants. As Panel A shows, the smaller deflection (less negative)
N200 amplitude was strongly associated with higher preference scores (p < .01) in both electrodes, while stronger theta power (Panel B) was negatively corre-
lated with higher preference scores (p < .01) only at electrode Fz.
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correlation, which is less sensitive to extreme values (Spear-
man’s r = .64, p < .05).
Similarly, for each participant, we correlated the average

theta activity response to passively viewing each product
(averaged over 50 repetitions) with the preference scores for
all products. As Figure 4, Panel B, illustrates, the correlation
between the average theta activity and the average total
number of times that product was chosen across all partici-
pants was high, negative, and significant in electrode Fz
(Pearson r = –.83, p < .001; Spearman r = .76, p < .05 [left
panel]) but not in electrode Pz (Pearson r = –.08, p = .82
[right panel]). That is, the lower the theta activity measured
in electrode Fz during passive viewing of a product, the
higher the preference ranking of that product in the subse-
quent choice task. The existence of a significant effect only
in electrode Fz suggests that the predictive information of
the theta power originates in more frontal areas.

For illustrative purposes, we divided the rank-ordered
products (across the population) into two element bins and
plotted the ERSP levels as a function of product presenta-
tion. Figure 5, Panel A, describes this relationship in elec-
trode Fz for an example participant (participant 3), and
Panel B depicts the group average. As both panels show, the
power in the theta frequency band is decreasing as a func-
tion of preference score. Therefore, the weaker the theta
activity, the higher the preference score.
The correlation we found between EEG activity and pref-

erence for the products across participants is noteworthy.
This correlation indicates that it is possible to use the EEG
to identify products that are ranked highly by a population
of participants. Of course, this is only possible because such
a population-level ranking exists (i.e., participants have a
relatively similar preference ranking of the products). Table
WA2 in the Web Appendix reports the total number of times

520 JOURNAL OF MARKETING RESEARCH, AUGUST 2015

Figure 5
ERSP RESPONSE FROM Fz ELECTRODE TO RANK-ORDERED PRODUCTS

A: The ERSP Activity by Preference Score for a Single Participant (Participant 3)

B: The Average ERSP Activity by Preference Score Across All Participants

Notes: ERSP activity in response to viewing the ten products (each plot represents the average of two products) ordered by participants’ preference scores
as measured in the subsequent behavioral choice task (1 represents the two products that were least preferred, and 5 represents the two products that were most
preferred). Logarithmic scale of EEG frequency (3–40 Hz) is represented on the y-axis. Hot colors (red) indicate higher power (in dB), as shown on the scale
on the right. The black dotted line (zero on the x-axis) represents stimulus presentation onset.
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each participant chose a product (of the 54 possible trials),
as well as the total across the population (810 possible tri-
als). For example, participants chose the USB flash drive in
75% of the choice trials in which it was presented, in con-
trast with the magnetic message board, which was chosen in
only 27% of trials. For these two products, such a stark
ordering will yield a correlation with our neural measure
when the corresponding EEG measurements of these two
products are very different. For example, the average N200
value for the flash drive across participants was –5.23 mV,
significantly larger than that for the magnetic message
board, at –8.95 mV (p < .0001).
To examine the full sample, we computed the intersubject

correlations of the preference rankings between every pair
of participants. Table WA3 in the Web Appendix shows that
there was a range of intersubject correlation values, with 6
(of 105) correlation coefficients significantly different from
zero (p < .05) and another 5 with marginally significant
coefficients (p < .1). The average correlation coefficient was
raverage = .12, which was not significantly different from
zero due to the high range of coefficient values (from –.50
to .83 with a Cronbach’s alpha reliability index of a = .67).
Therefore, the correlation we found between EEG activity
and preference for the products across participants is partly
due to the intersubject correlation, which induces a sizable
population-level ranking.
Correlation of EEG Activity and Preference Within Subject
Having established an average population-level effect of

the N200 component and the number of times a consumer
product was chosen in the population, we next examined
whether this component was correlated with the ranking of
a product at the subject level. For each participant, we
observed the preference scores for each of the ten products
(the number of times the participant chose each product).
Thereafter, for each participant, we ranked the products
from one to ten and observed the corresponding amplitude
of the N200 component (averaged over 50 repetitions of
each product). We then averaged each of these ranked
scores and each of the corresponding N200 amplitudes
across all participants.
As Figure 6, Panel A, illustrates, the correlation between

the average N200 amplitude and the average preference
score for the ranked products was high, positive, and sig-
nificant (r = .7, p = .023) in electrode Fz but not in electrode
Pz (r = .34, p = .33). That is, the smaller the N200 deflection
(less negative magnitude), the higher the preference score of
that product in the subsequent choice task. The correlation
was stronger and remained significant when we used the
Spearman correlation (Fz: r = .77, p = .013; Pz: r = .35, p =
.31).
We analyzed the theta power band of EEG signal in a

similar manner. As Figure 6, Panel B, illustrates, the corre-
lation between the average theta power and the preference
score across all participants was high, positive, and signifi-
cant (Pearson r = –.77, p < .01; Spearman r = –.60, p = .07
[left panel]) in electrode Fz but not in electrode Pz (Pearson
r = .05, p = .88; Spearman r = .04, p = .91 [right panel]).
That is, the lower the theta activity measured in electrode Fz
during viewing of a product, the higher was the preference
ranking of that product in a subsequent behavioral choice

task conducted ten minutes later. Again, the existence of a
correlation only in electrode Fz suggests that the predictive
information of both the N200 and the theta power originates
in more frontal areas.
CHOICE PREDICTION USING EEG MEASUREMENTS
Having established that the average EEG activity within

products and within subjects correlates with choice prefer-
ence, we next address the main hypothesis of our study: Can
EEG data be used to derive a measurement of the value peo-
ple place on a consumer product, and can this measurement
be used to predict their trial-by-trial choices? To answer this
question, we conducted analyses on both the N200 and the
theta power activity using two methods recently introduced
in the neuroeconomic literature.
Ordinal Analysis
A requirement for relating neural measurement to choice

prediction is establishing that the ordering of the neural
measurements corresponds to the choices observed in the
behavioral task. To verify this, we rank-ordered each prod-
uct according to its EEG measurement of neural activity. We
report the number of correct predictions of pairwise choices
in our choice task, assuming that a product with larger mag-
nitude is chosen. For the ERSP theta power measurement,
the product with the strongest theta power was ranked last,
and the product with the weakest theta power was ranked
first. For the ERP measurement, we ranked each product
according to the mean (negative) deflection of the N200
response. The product associated with the largest N200
deflection was ranked last, and the product with the smallest
N200 deflection was ranked first.
Both the ERSP and ERP measurements in electrode Fz

predicted choice behavior. With the theta power of electrode
Fz, the proportion of correct predictions of pairwise choices
was .59 (SD = .12), ranging from .42 to .73 across partici-
pants, and was significantly different from chance (t(14) =
2.83, p < .05). The results of the N200 amplitude were simi-
lar, with a prediction rate of .57 (SD = .15) and marginal
significance (t(14) = 1.84, p = .09). Importantly, this predic-
tive power was not evident in electrode Pz for either the
theta power (M = .48, SD = .11; t(14) = –.84, p = .41) or the
N200 (M = .50, SD = .16; t(14) = –.12, p = .90). These
results demonstrate the specificity of the predictive power
of the EEG signal to more frontal electrodes.
Similarly, the proportion of correct predictions improved

as a function of the ordinal distance of the ranked products
for electrode Fz, but not for Pz (Figure 7). For example, in
the 54 trials in which the pairwise choice involved products
with adjacent neural ranking (ordinal distance of 1), the pro-
portion of correct predictions was not different from chance
(M = .53, ±.02). At an ordinal distance of 9, involving the
six pairwise choices between the highest- and lowest-
ranked products, the proportion of correct predictions was
.79 (±.1). The results for the N200 amplitudes were similar,
with a proportion of correct predictions of .53 (±.02) for
products with adjacent neural measurements and a predic-
tion rate of .70 (±.10) for products with an ordinal distance
of 9.
To capture this trend statistically, we conducted a linear

regression analysis between the ordinal distance of the theta



band and the proportion of correct predictions. The relation-
ship is strong and significant in electrode Fz (R2 = .91, p <
.001) but not electrode Pz (R2 = .32, p > .05). The results are
similar for the N200 (Fz: R2 = .50, p < .05; Pz: R2 = .01, p >
.05). This again strengthens the notion that the predictive
information is specific to frontal areas.

Cardinal Analysis: NRUM
It is noteworthy that the magnitude difference in the rank-

ing of the EEG measurements for each product carries pre-
dictive power. This observation is consistent with a possible
cardinal scale underlying the measure of value on which the
ordinal ranking is based. This is because knowing “how
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Figure 6
PARTICIPANT-LEVEL ANALYSIS

A: N200 ERP component

B: Theta Band (5–8 Hz) Power

!

!
Notes: The graph shows a scatter plot of the correlation across participants between the preference score of each product for each participant (as measured

by the total number of times each participant chose each product during the subsequent behavioral task) with the corresponding average EEG activity for each
product for electrodes Fz (left) and Pz (right). The horizontal error bars denote the standard error of the EEG activity for each product across participants. The
vertical error bars represent the standard error of the means of the preference ratings for each product across participants (the vertical error bars are not evident
because they are smaller than the black circle). As Panel A shows, the smaller deflection (less negative) N200 amplitude was strongly associated with higher
preference scores (p < .01) only at electrode Fz, while stronger theta power (Panel B) was negatively correlated with higher preference scores (p < .01) also
only at electrode Fz.
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much” a person values a consumer product (relative to
another product) can yield improved prediction rates.
To examine this possibility, we use the NRUM and

choice prediction procedure described in Webb et al. (2013).
The NRUM estimates the likelihood that a participant will
choose one product over another on the basis of the differ-
ence in neural activity recorded for those two products. An
additional advantage of this model is that it applies standard
econometric techniques (e.g., a random-effect Probit model)
to partially account for the large amount of measurement
error present in neural variables. Repetitions of choice trials
per choice pair (six repetitions in this experiment) are used
to estimate the variance of the measurement error through a
random effect. This partially corrects for the downward bias
introduced by measurement error and yields improved
choice prediction results when using neural data.
In Panel A of Figure 8, we report the estimated probit

coefficient from the NRUM for the N200 signal for each

participant. An increase in the difference of our neural mea-
surement led to a significant increase in the likelihood of
choosing the higher alternative for 8 of the 15 participants.
For 4 participants, there was no significant result, and the
parameter estimate went in the opposite direction for the
remaining 3 participants, a result consistent with the high
degree of measurement error observed in our neural signal.3
We should note that by chance, we would only expect ~1
participant to have a positive and significant result, and the
magnitudes of these results are similar to those reported in
Webb et al. (2013).
To examine the magnitude of the choice prediction results

from the model, we took the fitted choice probabilities in
each trial and simulated 1,000 choices for each trial. We

Figure 7
ORDINAL PREDICTION AS A FUNCTION OF NEURAL DISTANCE

A: Ordinal Distance in Theta Power

B: Ordinal Distance in N200 Amplitude

!

!
Notes: Data represent the proportion of correct choice predictions as a function of theta power and N200 distance at electrode Fz and at Pz. The products

were ranked according to the theta power or N200 they generated, and proportions of correct predictions were calculated separately for each ordinal distance.
Error bars represent one standard error of the mean of the proportion of correct predictions across participants.

3For an in-depth discussion of measurement error and its impact on
relating neural measurement to choice prediction, see Webb et al. (2013),
in particular section IV.C and footnotes 19 and 20.
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report the fraction of simulated trials in which the simulated
choices match the actual choices from the behavioral data in
Panel B of Figure 8. Prediction rates lie significantly above
chance for all but one of our participants and range up to .76.
Across the entire sample, the average prediction rate is .64 (p
< .01) and remains at .65 if we drop the three participants
with negative parameter estimates. To verify that our predic-
tion rates hold up out-of-sample, for each participant we also
estimated the NRUM on only half the choice pairs and

repeated our prediction exercise for the remaining choice
pairs. This exercise uses half the data (for each participant)
to predict the remaining choices of that participant. Predic-
tion rates remained significantly above chance for 13 of the
15 participants, and the average out-of-sample prediction
rate across the subject pool was .59 (p < .01).
We report similar results for the ERSP theta band in Pan-

els C and D of Figure 8, though for this measurement, an
increase in the differenced theta band activity significantly
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Figure 8
CARDINAL ANALYSIS

A: The Estimated Probit Coefficient from the NRUM for Each Participant for the N200 Signal at Electrode FzA: The Estimated Probit Coefficient from the NRUM for Each Participant
for the N200 Signal at Electrode Fz

B: The Fraction of Simulated Trials on Which the Simulated Choices
Match the Actual Choices from the Behavioral Data

C: The Same as A but for Theta Power D: The Same as B but for Theta Power

! !

! !
Notes: Error bars represent the 95% confidence intervals. The first five participants are depicted in white.
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increases the likelihood of choosing the lower valued alter-
native. Choice prediction rates reported in Panel D range up
to .78, with an average prediction rate of .65 (before and
after we dropped the one participant with a positive esti-
mate). The average out-of-sample prediction rate was .60
and significantly different from chance (p < .01).

DISCUSSION
We demonstrate that EEG measurements of neural activ-

ity, taken while a person visually evaluates a consumer
product, can predict preferences in a subsequent binary
choice task over the same products. Importantly, the accu-
racy of our predictions depends on both the ordinal and car-
dinal distance of the neural measurement. The larger the
magnitude differences in our EEG measures, the better the
predictive accuracy. A smaller (negative) deflection in the
N200 amplitude and a weaker theta band power correlate
with a more-preferred product at the subject level, and
notably, these same measurements, averaged over the entire
sample, correlate with the frequency that a particular prod-
uct was preferred in our subject population.
Our findings have clear implications for marketing

research and application. First, this study demonstrates that
consumer preferences can be predicted using EEG methods.
Compared with other measurement techniques in neuro-
science, EEG is less expensive, widely available, and even
portable enough to be used in the field. Our results focus on
consumer products, but the general nature of evidence for
value measurements in the prefrontal cortex using fMRI
methods (e.g., Bartra, McGuire, and Kable 2013; Levy and
Glimcher 2012) implies that, in principle, EEG can also be
used for predicting the outcome of marketing-related strate-
gies or campaigns, not simply preferences for consumer
products. This notion may even extend to the valuation of
novel products with which the consumer has had no experi-
ence (Barron, Dolan, and Behrens 2013) or products that are
currently under development.
Second, we obtained the EEG measurements used to pre-

dict choices while participants were not making actual deci-
sions (or any motor response whatsoever) but simply view-
ing each product in isolation. This procedure is relevant to
situations in which the marketer cannot directly ask con-
sumers for their preferences (in questionnaires or actual
choice tasks) or in situations in which consumers passively
view advertising messages on various content-delivery
media. By eliminating the need to elicit any response from
the consumer directly, our methods avoid many elicitation
biases and may lead to less interference in the valuation
process.
Link to Feedback-Related Negativity
From a technical standpoint, our observed correlations of

preferences with both frontocentral N200 amplitude and
theta power are in line with previous studies. Previous work
suggests that feedback-related negativity (FRN), a fronto-
central negative potential, shares the same scalp distribu-
tion, time course, morphologies, and functional dependen-
cies as the N200 component (Holroyd, Pakzad-Vaezi, and
Krigolson 2008) and is strongly linked to people’s choices
(for a review, see Walsh and Anderson 2012). Importantly,
the FRN component is mainly identified in response to

feedback (Simons 2010). For example, the FRN appears
200–300 ms after the display of unfavorable versus favor-
able outcomes and indexes how “good” or “bad” an out-
come is within a given context (Goyer, Woldorff, and Huet-
tel 2008; Hajcak et al. 2006; Kreussel et al. 2012; Masaki et
al. 2006; Nieuwenhuis et al. 2004). Research has also found
that for unfavorable outcomes, the more negative they are
perceived to be, the stronger is the FRN response they elicit,
and the FRN also emerges in response to passively viewing
outcomes (Yeung, Holroyd, and Cohen 2005).
Importantly, there is also a link between FRN activity

related to choice values and theta power. Studies focusing
on the frequency characteristics of the FRN have found that
strong frontal theta power activity is linked to FRN activity
and emerges in response to the presentation of unfavorable
outcomes (Cohen, Elger, and Ranganath 2007). In addition,
Gehring et al. (2012) extracted theta oscillations using the
Morlet wavelet transform and found a frontally focused
theta (4–7 Hz) activity for monetary losses compared with
monetary gains.
The FRN component appears not only in experiments

involving active choice, but also in experiments in which
outcomes are received without choice behavior. For exam-
ple, Yeung, Holroyd, and Cohen (2005) show that the FRN
can be elicited for unfavorable outcomes when choices are
not actively made but only passively viewed by participants.
However, in our experimental design, participants did not
receive products (i.e., feedback) following choice. Thus,
this raises the possibility that the unfavorable outcome-
related negativity (as identified by both the N200 and the
FRN) emerges not only in response to actual feedback but
also in valuation without active choice or feedback. This
suggests that it is a more general valuation response to unfa-
vorable stimuli and strengthens the notion that—even at the
level of EEG activity—the neural representations of values
share similar properties and are located within the same
brain structures when people make actual choices and when
they only evaluate options without actively choosing.
Thus, in accordance with other scholars (e.g., Holroyd,

Pakzad-Vaezi, and Krigolson 2008), we suggest that both
the FRN (which involves an actual feedback) and the N200
originate from the same value-related cognitive mechanism.
We further suggest that the N200 value-related signal is
similar to the FRN value-related signal, but only in situa-
tions in which no choices are involved. Our study strongly
implies that EEG signals can be used without feedback or
active choice to measure how valuable an option is.
Response Inhibition as a Possible Mechanism for N200
Amplitude
It is also possible that the increased N200 and theta

power after the presentation of an unwanted product is a
manifestation of response inhibition, though without the
need to inhibit actual motor responses. Studies using a
go/no-go task, which requires a participant to perform an
action given certain stimuli (e.g., press a button [go]) and to
inhibit that action under a different set of stimuli (e.g., do
not press the same button [no-go]), have demonstrated that
the frontocentral N200 generates a larger (more negative)
deflection after the presentation of a no-go signal than the
presentation of a go signal (Enriquez-Geppert et al. 2010;



Falkenstein, Hoormann, and Hohnsbein 1999; Van Veen and
Carter 2002). The go/no-go task also elicits frontal theta
power activity that is greater in response to a no-go signal
than a go signal (Kirmizi-Alsan et al. 2006; Yamanaka and
Yamamoto 2010). However, most of the studies investigat-
ing event-related brain activity using the go/no-go task
focused on situations in which participants needed to
actively inhibit an immediate motor response (Yeung,
Botvinick, and Cohen 2004).
Importantly, in our study participants did not engage in

actual decisions while we measured their EEG activity.
Therefore, the N200 component we identify might have a
larger deflection in response to more unwanted products
because these products elicited a stronger response inhibi-
tion, which can occur even without active choice. Our find-
ings regarding the theta power activity agree with this
notion as well. The stronger theta power we observed for
least-preferred products might be due to the stronger
response inhibition these products elicited compared with
the most-preferred products. This possibility again strength-
ens the notion that similar neural value representations are
in operation when we evaluate options for active choice and
when we evaluate options without any active choice or any
motor action.
Classification of N200 Signal
Previous studies have characterized several distinct N200

potentials. The N2a, also termed the “mismatch negativity
potential,” is mainly localized in the frontocentral areas of the
scalp and is typically elicited in response to an unpredictable,
low-probability, auditory stimulus in a sequence of stimuli
(Naatanen et al. 2007). Conversely, the N2b component,
which is not restricted to auditory tasks, is observed only dur-
ing conscious attention to various stimuli and is mainly associ-
ated with response selection, inhibition, and error monitoring
with maximal effect at electrode Fz (Patel and Azzam 2005).
A third type, the N2c, is mainly associated with categorization
of stimuli in classification tasks and is larger for infrequent
than for frequent stimuli. The N2c is typically localized in
posterior scalp sites and is usually accompanied by a larger
P300 component (Luck 2005), which we did not observe in
our data. Therefore, we suspect that the N200 found in our
study could be classified as an N2b potential. First, it is local-
ized in the frontocentral areas of the scalp. Second, because
our study is focused only on the visual aspects of the products
and does not involve any auditory stimuli, it is likely not the
N2a component. Third, the N2b is related to response inhibi-
tion, and inhibition is possibly one of the mechanisms under-
lying the N200 effect found in our study.
Relationship Among EEG, fMRI, and Choice Prediction
Previous EEG studies have demonstrated a link between

hemispheric asymmetry in the theta band (though using a
different type of measurement than that in the current study)
and some aspects of valuation of consumer products, such
as pleasantness and liking ratings (Lee et al. 2013; Vecchi-
ato et al. 2011). Our data extend these findings in several
ways. First, we found a correlation between the theta band
power and participants’ rank-ordered preferences without
requiring any hemispheric asymmetry in our analysis. Sec-
ond, to our knowledge, this is the first study to correlate a

component of the general EEG waveform (N200), identified
in an event-related potential, with subsequent choice behav-
ior. Third, we demonstrate that the predictive power
depends on the magnitude of the theta power band, suggest-
ing a cardinal scale for our measurement. Finally, we
demonstrate that the signal likely originates from frontal
areas. We now briefly discuss each of these contributions.
In our study, the most predictive information representing

participants’ preferences originated from a more frontal
electrode (Fz) than a more posterior electrode (Pz). This
suggests that the most informative neural activity originated
from more frontal areas. Note, however, that with sufficient
power, volume conduction can cause any EEG effect to be
detected in any electrode. Therefore, the localization of
EEG waveforms is inaccurate and not specific to an area of
the frontal cortex. In addition, it is very difficult to use EEG
to source signals that originate from deep brain areas, such
as the ventromedial prefrontal cortex, dorsomedial pre-
frontal cortex, insula, or anterior cingulate cortex, which
previous fMRI studies have used to predict participants’
subsequent choices (e.g., Falk, Berkman, and Lieberman
2012; Smith et al. 2014). Thus, it is important to emphasize
that this study finds stronger predictive power originated
from a frontal electrode (not the more posterior Pz elec-
trode) rather than from a specific localization of the source.
Our finding that the predictive accuracy depended on

ordinal and cardinal distance in EEG measurements is in
line with previous fMRI results (Levy et al. 2011; Webb et
al. 2013). These studies used a measure of neural activations
in the mPFC and striatum (brain areas known to represent
expected and perceived subjective values for various reward
types; Bartra, McGuire, and Kable 2013; Levy and Glim-
cher 2012) while participants passively viewed different
products inside the scanner. The authors then used these
measured neural activations to construct an ordinal neural
ranking of the products, and this ranking predicted choice
outcomes with accuracy of up to 82%–83% for products
with the greatest neural ranking distance. Perhaps surpris-
ingly, given the nature of EEG technology, we achieved
79% accuracy for products with the greatest neural ranking
distance. In a similar fMRI experimental setup, Smith et al.
(2014) report within-subject correlations of a similar magni-
tude, as well as a 77% prediction rate for preference ratings
for specific products across the population. This result,
together with our observed correlation between EEG activ-
ity and the frequency with which a product was chosen in
the population, suggests that neural activity measured with
either fMRI or EEG can have significant predictive power,
both within and across subjects for each product. Both mea-
surement techniques convey important information about
current valuations and subsequent choices.
Although our prediction rates were significant when

averaged over all the products, we emphasize that the
observed predictive power depended on both the neural
distance and the preference distance found in behavior. An
accuracy rate of almost 80% was only possible when par-
ticipants had stark preferences between the products con-
sidered. When the products were close in preference—and
in the magnitude of the neural measure—the prediction was
not above chance. The magnitude of these results, and the
effect of measurement error in choice prediction, is in line
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with previous studies (Webb et al. 2013), and our prediction
rates using EEG are similar to prediction rates reported in
previous fMRI studies (e.g., Falk, Berkman, and Lieberman
2012; Lebreton et al. 2009; Levy et al. 2011; Smith et al.
2014; Tusche, Bode, and Haynes 2010). 
Table 1 reports the prediction rates from the studies noted

previously alongside our results. There are several points to
note from this exercise. First, our study is the first to use
EEG methods to significantly predict choices. Second,
although our prediction rates are not exceptionally high,
they are in line with the current state of fMRI studies (per-
haps surprisingly so, given the low signal-to-noise ratio
typically associated with EEG methods). Third, because the

prediction rates vary across all these studies, prediction
rates are likely sensitive to the choice set chosen in a given
experiment and the analysis methods employed. We contend
that EEG can be a practical tool for marketing research. 
The ability to predict consumer choices without eliciting

any response from the consumer is a valuable research tool,
and EEG has several important advantages over fMRI. The
purchase and operational costs of an EEG system are rela-
tively low, it is portable and less restrictive for participants,
and the data-sampling rate is high. However, we emphasize
that additional studies are necessary to understand the gen-
erality of our findings before this technique can be reliably
used for commercial purposes.

Table 1
AVERAGE PREDICTION RATES

Study                                                                      Average Prediction Rate                                           Analysis Method                                          Imaging Tool
Tusche, Bode, and Haynes (2010)                                    70%–82%                                                 Within subject (SVM)                                            fMRI
Levy et al. (2011)                                                                  56%                                              Within subject (ordinal analysis)                                    fMRI
Webb et al. (2013)a                                                                56%                                                           Cardinal NRUM                                                 fMRI
Webb et al. (2013)a                                                                69%                                          Cardinal NRUM + other observables                                fMRI
Smith et al. (2014)                                                                 61%                                              Within subject (ordinal analysis)                                    fMRI
Smith et al. (2014)                                                                 77%                                              Within group (cardinal analysis)                                    fMRI
Smith et al. (2014)                                                                 61%                                             Across groups (cardinal analysis)                                   fMRI
The current study                                                                  59%                                             Within subject (cardinal analysis)                                    EEG
The current study                                                                  65%                                                           Cardinal NRUM                                                 EEG
aThe prediction rates that Webb et al. (2013) report are for multiple choice trials. The single-trial probabilities are reported here for easy comparison with

other studies.
Notes: The average prediction rates for future choices in different studies in which participants did not make actual choices while their brain activity was

measured. Analysis method refers to the prediction methods used in the study. Note that all prediction rates are significantly above the chance level of 50%.
SVM = support vector machine.
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